728x90

PAPERREVIEW 2

[Paper Review] MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision 이번에 리뷰할 논문은 "MLP-Mixer: An all-MLP Architecture for vision" 입니다. 현재 convolution과 attention 기반의 네트워크가 computer vision 분야에서 널리 사용되고 있지만 실상 이 두가지가 꼭 필요한 것은 아니라고 주장하며, 아키텍처 전체가 MLP만을 사용한 MLP-Mixer 구조를 제안하였습니다. MLP-Mixer는 기존의 Convolution과 Attention 모듈 없이 MLP만으로 Image Recognition을 잘 수행할 수 있도록 다음과 같이 두 가지 MLP Block으로 구성된 Mixer Layer를 제안합니다. Channel-Mixing M..

[Paper Review] Very Deep Convolutional Networks for Large-Scale Image Recognition (VGGNet)

이전에 정리해두었던 vgg net review를 올립니다. 간단한 구조를 채택하여, 성능이 보다 높았던 inception 보다 더 많이 활용되었던 구조입니다. 지금도 backbone으로 종종 쓰이나 resnet보다는 그 활용성이 떨어집니다. 기존의 network 깊이를 19 layer까지 쌓음으로써 성능을 끌어올렸다는 점에서 주목을 받았고, 그 비법은 작은 필터 사이즈의 convolution layer를 여러 개 쌓은 것입니다. 자세한 내용은 후술하겠습니다. 목차는 다음과 같습니다. Context Introduction VGG Net 구조 Classification Framework Experiments Conclusion 1. Introduction ILSVRC 2014 second-winner 대규모..

DeepLearning/Basic 2022.05.01
728x90