gradient accumulation 관련 코드를 찾아보다 model.zero_grad()를 처음 보게 되어서 글 짧게 남깁니다. def train(opt): optimizer = torch.optim.Adam(model.parameters(), ...) for epoch in opt.n_epochs: model.train() for step, batch in enumerate(train_loader): optimizer.zero_grad() x, y = batch[0].to(opt.device), batch[1].to(device) output = model(x) loss = criterion(output, y) loss.backward() # backward 시 gradient가 계산되며 텐서의 g..