728x90

representation learning 2

[Contrastive Learning] Contrastive Learning이란

오늘은 contrastive learning에 대해 정리를 해보겠습니다. 처음에 facenet에서 triplet loss를 접하고 흥미 있는 분야라고만 생각해왔는데 self-supervised learning 분야에서 많이 발전을 이룬 것 같습니다. 해당 포스트에서 정리한 내용은 survey 논문인 "Contrastive Rerpesentation Learning: A Framework and Review"를 읽고 정리한 내용입니다. 하기한 내용에 질문 혹은 오류가 있을 경우 댓글 부탁드립니다. Contrastive Representation Learning: A Framework and Review 포스트의 목차는 다음과 같습니다. 이번 포스팅에서는 2. Contrastive Learning Archi..

[Generative Models] Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks (2016)

오늘은 DCGAN 논문을 리뷰해보겠습니다. DCGAN의 경우에 구조나 사용된 기법들이 아주 새롭다고 할 수는 없지만 representation learning으로서 GAN이 어떻게 기능하는지 실험을 진행했다는 점에서 흥미롭게 볼 수 있었습니다. 하기한 내용은 혼자 공부하면서 적은 것이라 틀린 부분이 있다면 말씀 부탁드립니다! 1. Introduction GAN을 학습시키면서 good image representation을 구축하는 방법을 제안함. 이후 Generator(이하 G)와 discriminator(이하 D) 네트워크의 일부분을 지도학습의 feature extractor로 재사용하는 방법을 제안. 기존 GAN의 경우에는 불안정한 학습으로 인한 이상한 출력을 생성한다는 단점이 존재했음. (DCGAN..

728x90