728x90

self-supervised learning 4

[Paper Review] Masked Autoencoders Are Scalable Vision Learners (CVPR'22)

오늘 리뷰할 논문은 Masked Autoencoders Are Scalable Vision Learners (a.k.a. MAE)입니다. 22년도 CVPR에서 oral presentation으로 선정된 논문이며, Masked Modeling을 아주 간단한 방식을 통해서 Vision 분야의 self-supervised pre-training에 성공적으로 적용한 논문입니다. 이 방법론은 Simple, effective, scalable하다고 정리할 수 있겠습니다! 하기할 내용에 오류 혹은 질문이 있을 경우 언제든 댓글 부탁드립니다! Abstract We mask random patches of the input image and reconstruct the missing pixels based on two ..

[Paper Review] DINO: Emerging Properties in Self-Supervised Vision Transformers (ICCV'21)

Emerging Properties in Self-Supervised Vision Transformers 이번에 리뷰할 논문은 2021년 ICCV에서 발표된 Emerging Properties in Self-Supervised Vision Transformers (Venue: Facebook AI Research)입니다. DINO라는 self-distillation 구조의 자기지도학습 방법론을 제안하며, 동시에 self-supervised learning과 ViT가 결합되며 발생하는 특성들에 대한 분석과 흥미로운 실험 결과를 논문에서 밝히고 있습니다. 특히 self-supervised ViT가 segmentation mask에 대한 정보를 갖고 있다는 특성이 굉장히 재미있었고, 기존의 supervised..

[Paper Review] Patch-level Representation Learning for Self-supervised Vision Transformers (CVPR'22)

오늘은 CVPR 2022에서 oral presentation으로 선정된 논문인 Patch-level Representation Learning for Self-supervised Vision Transformers (a.k.a. SelfPatch) 를 리뷰해보도록 하겠습니다. 기존의 SSL ViT 아키텍처가 모두 global representation만을 loss에서 활용된다는 점을 이야기하면서 이러한 부분은 attention의 collapse로 이어지며 representation quality를 떨어뜨린다고 문제를 제기하고 있습니다. 해당 논문은 ViT 아키텍처에서 손쉽게 patch representation을 얻을 수 있음에도 불구하고 이러한 부분은 전혀 활용되지 않고 있다는 점에서 출발하여, ViT..

[Contrastive Learning] Contrastive Learning이란

오늘은 contrastive learning에 대해 정리를 해보겠습니다. 처음에 facenet에서 triplet loss를 접하고 흥미 있는 분야라고만 생각해왔는데 self-supervised learning 분야에서 많이 발전을 이룬 것 같습니다. 해당 포스트에서 정리한 내용은 survey 논문인 "Contrastive Rerpesentation Learning: A Framework and Review"를 읽고 정리한 내용입니다. 하기한 내용에 질문 혹은 오류가 있을 경우 댓글 부탁드립니다. Contrastive Representation Learning: A Framework and Review 포스트의 목차는 다음과 같습니다. 이번 포스팅에서는 2. Contrastive Learning Archi..

728x90